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This note derives the governing equations for the rolling of the Rattleback on a flat surface. The 1-2-3 system of Euler
angles is used to express the rotated body-fixed coordinate system with respect to the inertial coordinate system. The
governing ordinary differential equations are derived from the Euler’s laws of linear and angular momentum balance.
Finally, the governing equations are solved numerically in MATLAB to demonstrate the model’s prediction of spin
reversal of the Rattleback.

Introduction: A Rattleback, also referred as a celt, wobblestone or a rattlestone is a semi-ellipsoidal solid object that
exhibits a “preferred direction” of spin on its semi-ellipsoidal surface S; see Fig. 1a. Thus, while the Rattleback keeps
on spinning if the initial spin is given in its preferred direction, a spin reversal is observed when one attempts to spin
it in its non-preferred direction. Due to the complex nature of the governing differential equations of the Rattleback,
an exact, closed form solution could not be attained in the earlier efforts to model the “Rattleback effect” (Walker,
1979; Caughey, 1980). Subsequently, with the availability of computers and development of efficient Runge-Kutta-type
solution algorithms, researchers have reported numerical solutions to the governing equations (Kane and Levinson,
1982; Lindberg Jr and Longman, 1983; Garcia and Hubbard, 1988; Moffatt and Tokieda, 2008; Case and Jalal, 2014;
Kondo and Nakanishi, 2017; Rauch-Wojciechowski and Przybylska, 2017). This note considers a practical approach
towards numerically computing the response of a Rattleback under different initial conditions.

Figure 1: (a) Schematic diagram of the Rattleback having semi-ellipsoidal surface S with geometrical center at O′ and center of mass at
G. The coordinate system {ĕ1, ĕ2, ĕ3} is attached to the ellipsoid at its geometric center O′, whereas the body-fixed coordinate system
{e1, e2, e3} is attached to the center of mass of the ellipsoid G. The inertial coordinate system having center at O is denoted by {E1,E2,E3}.
(b) Free-body-diagram of the Rattleback showing external force fP from the ground acting at point P and its weight acting along −E3 at
its center of mass G.

Coordinate systems and geometry: Consider the space-fixed (inertial) coordinate system (SFCS) having origin at
point O on the flat surface is represented by the set {E1,E2,E3}. The body-fixed coordinate system (BFCS) attached
at the geometric center O′ of the semi ellipsoid represented by {ĕ1, ĕ2, ĕ3}, while the BFCS attached to the center of
mass G of the semi ellipsoid is denoted by {e1, e2, e3}. Notice that the coordinate systems {ĕi} and {ei} are related
by a translation along e3 (or, equivalently along −ĕ3). The distance between G and O′ is b, which is the depth from
the cut surface of semi-ellipsoidal solid at which the center of mass is situated. The equation of surface S in {ĕi}
coordinate system is

x̆21
a21

+
x̆22
a22

+
x̆23
a23

= 1, (1)

where ai (i = 1, 2, 3) are the principal semiaxis lengths of the ellipsoid having center at O′. Since the BFCSs {ĕi} and
{ei} are related via a translation of length b along e3, (1) can be rephrased as

x21
a21

+
x22
a22

+
(x3 − b)2

a23
− 1 := E(x1, x2, x3) = 0. (2)

Since the normal to the ellipsoid at the point of contact P is always parallel to E3, the position vectors xi of P satisfy
the constraint (Kane and Levinson, 1982; Garcia and Hubbard, 1988)[

grad(E)
]
xP

×E3 = 0, (3)

where grad(□) represents gradient with respect to x. Considering a representation for E3 = n
(3)
1 e1 + n

(3)
2 e2 + n

(3)
3 e3

in the {ei} basis, the kinematic constraint (3) is expressed as

n
(3)
2 (xP3 − b)

a23
− n

(3)
3 xP2

a22
= 0,

n
(3)
3 xP1

a21
− n

(3)
1 (xP3 − b)

a23
= 0,

n
(3)
1 xP2

a22
− n

(3)
2 xP1

a21
= 0. (4)
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The coefficients n
(3)
i are essentially three unknowns. However, instead of considering n

(3)
i as primary variables, they

can be conveniently expressed in terms of three Euler angles {ϕ, θ, ψ}. Note that xP1, xP2 and xP3 also satisfy (2)
since P is always on the surface S. Thus, equations (4) along with (2) leads to the expression for xi to be

xPi = ± a2in
(3)
i√∑3

j=1

(
ajn

(3)
j

)2
+ bδi3, [No sum in i.] (5)

where δpq is the Kronecker delta symbol. Hence, the coordinates of point P in the bases {ei} is determined in terms of
the Euler angles and the semiaxis lengths ai of the ellipsoid. Hence, the position of the contact point P with respect
to the center of mass G is given by rP/G = xPiei (P is not a dummy index). The exact sign (+/−) of xPi to be
considered in (5) depends on the choice of Euler angles, which is discussed in the following.

Kinematics: The center of mass G of the Rattleback can be located at a distance rG from the inertial reference point
O. Nonetheless, for describing its orientation in three dimensions it needs to define three more independent variables
relating the BFCS {ei} to the SFCS {Ei}. Here for example, we employ a 3-1-3 system of Euler angles is employed to
relate the BFCS {ei} to SFCS {Ei}. Thus, different intermediate coordinate systems shown in Fig. 2 are related via

Ei
R
∼1(ϕ,E1)−−−−−−→ e′i

R
∼2(θ,e

′
2)−−−−−→ e′′i

R
∼3(ψ,e

′′
3 )−−−−−−→ ei, (6)

Where R
∼1, R∼2 and R

∼3 are three rotation tensors mapping the left hand unit vectors to those in the right hand of the
arrows in (6).

Figure 2: Sequence of rotations in a 1-2-3 system of Euler angles.

The matrix of three rotation tensors indicated in (6) expressed in their respective basis systems read

[
R
∼1

]
E
=

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 , [
R
∼2

]
e′ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , [
R
∼3

]
e′′ =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 . (7)

The angular velocity of the Rattleback is thus given by ω = ϕ̇E1 + θ̇e′2 + ψ̇e′′3 = ϕ̇e′1 + θ̇e′′2 + ψ̇e3. Unit vectors e′i and
e′′i can be expressed from (6) and (7) to be{

e′i
}
e
=

[
R
∼3

]T
e′′

[
R
∼2

]T
e′

{
e′i
}
e′ ,

{
e′′i

}
e
=

[
R
∼3

]T
e′′

{
e′′i

}
e′′ . (8)

Hence, the angular velocity vector ω expressed in the BFCS {ei} reads ω = ωiei, where the components ωi are given
by

ω1 = ϕ̇ cos θ cosψ + θ̇ sinψ, ω2 = −ϕ̇ cos θ sinψ + θ̇ cosψ, ω3 = ϕ̇ sin θ + ψ̇. (9)

We assume further the Rattleback to be rolling without slipping on the flat surface. Hence, the point of contact P as
shown in Fig. 1a will always satisfy vP = 0. Thus, the velocity of the center of mass G of the Rattleback is (Kane
and Levinson, 1982; Lindberg Jr and Longman, 1983; Garcia and Hubbard, 1988)

vG = −ω × rP/G. (10)

where rP/G = xPiei is the position vector of P with respect to G. Note that, the position vector rP/G changes both
its length and orientation in time. Hence, the rate of change of its length needs to be taken care of in the kinematic
formulation. Thus, r̊P/G = ẋPiei. Differentiating (10) we obtain the acceleration of the center of mass aG to be

aG = v̇G = −ω̇ × rP/G − ω × (ω × rP/G)− ω × r̊P/G. (11)
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The symbol □̊ in the above equation represents the component derivative of a vector considering its unit vectors to be
constant. The calculation of r̊P/G is carried out by differentiating (5). The components of r̊P/G are listed next. First,
the time derivatives of xPi reads

ẋPi = ± a2i ṅ
(3)
i√∑3

j=1

(
ajn

(3)
j

)2
∓ a2in

(3)
i[∑3

j=1

(
ajn

(3)
j

)2
]3/2( 3∑

j=1

a2jn
(3)
j ṅ

(3)
j

)
. [No sum in i] (12)

Clearly, the esssential components of ẋPi are the time derivatives of the components of the unit normal vector E3,

which has components n
(3)
1 , n

(3)
2 and n

(3)
3 . These components can be expressed in terms of the Euler angles as

n
(3)
1 = sinϕ sinψ − cosϕ cosψ sin θ, n

(3)
2 = cosψ sinϕ + cosϕ sinψ sin θ, and n

(3)
3 = cosϕ cos θ. Furthermore, ṅ

(3)
i in

(12) can be obtained from the relation
Ė3 = 0, (13)

since E3 is an unit vector that is fixed in space. Hence, ṅ
(3)
i are expressed as:

ṅ
(3)
1 = −(ω2n

(3)
3 − ω3n

(3)
2 ), ṅ

(3)
2 = −(ω3n

(3)
1 − ω1n

(3)
3 ), ṅ

(3)
3 = −(ω1n

(3)
2 − ω2n

(3)
1 ). (14)

Thus, substituting (9), (12) and (14) into (11), one can fully express aG in terms of the Euler angles and their first
and second-order time derivatives. Finally, note that only negative signs of the terms in (5) are retained because of
the term a2ini present its denominator and ni is posiive for all 0 < {ϕ, θ, ψ} < π

2 for all i = 1, 2 and 3. Thus, the point
of contact P for 0 < {ϕ, θ, ψ} < π

2 always lies in the third quadrant of the BFCS {ei}. Next, the linear and angular
momentum balance laws for the Rattleback are laid down.

Kinetics: The free-body-diagram of the Rattleback is depicted in Fig. 1b. Notice that except the gravitational
force acting at G, the Rattleback expeciences ground reaction and frictional forces at the point of contant P . The
resultant of the reaction and friction forces at P is represented by fP . Hence, the linear momentum balance law for
the Rattleback reads

fP −mgE3 = maG, (15)

where m is the mass of the Rattleback and g is acceletion due to gravity. Next, the angular momentum balance for
the Rattleback, written with respect to its center of mass G is expressed as

rP/G × fP = I
∼
Gω̇ + ω × I

∼
Gω, (16)

where I
∼
G is the inertia tensor associated with the Rattleback. Substituting fP from (15) into (16) leads to

rP/G ×
(
mgE3 +maG

)
= I

∼
Gω̇ + ω × I

∼
Gω. (17)

Substituting (11) and (9) into (17) one can obtain three fully coupled, second order, nonlinear ordinary differential
equations (ODEs) in terms of the Euler angle triad {ϕ, θ, ψ} and their time derivatives governing the motion of the
Rattleback. Such an exercise is cumbersome and the final algebraic expressions becomes highly complicated.

An alternative way to express the governing equations as six first order ODEs in terms of ϕ̇, θ̇, ψ̇, ω̇1, ω̇2, ω̇3 and
solving them in a computer employing the explicit Runge-Kutta-type algorithms. The first set of governing ODEs in
terms of ϕ̇, θ̇, ψ̇ are obtained from (9) to be

ϕ̇

θ̇

ψ̇

 =

 cos θ cosψ sinψ 0
− cos θ sinψ cosψ 0

sin θ 0 1

−1 ω1

ω2

ω3

 ≡


ϕ̇

θ̇

ψ̇

 =
[
Φ
∼

]−1

ω1

ω2

ω3

 . (18)

Next, the angular momentum balance law (17) leads to three set of ODEs in terms of ω̇1, ω̇2, ω̇3. First substitute aG
from (11) into (17) to obtain

rP/G ×
[
mgE3 −mω̇ × rP/G −mω × (ω × rP/G)−mω × r̊P/G

]
= I

∼
Gω̇ + ω × I

∼
Gω. (19)

Rearranging terms in (19) yields:

mg(rP/G ×E3)−mrP/G ×
[
ω× (ω× rP/G)

]
−mrP/G × (ω× r̊P/G)−ω× I

∼
Gω = I

∼
Gω̇−mrP/G × (rP/G × ω̇). (20)

The last equation can be rephrased in tensor notations as

mgX
∼
E3 −mX

∼
W
∼

2rP/G −mX
∼
W
∼
r̊P/G −W

∼
I
∼
Gω =

[
I
∼
G −mX

∼
2
]
ω̇, (21)
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where X
∼

and W
∼

are skew-symmetric tensors, whose axial vectors are rP/G and ω, respectively. Hence, the matrices
of X

∼
and W

∼
in the BFCS ei read

[
X
∼

]
e
=

 0 −xP3 xP2

xP3 0 −xP1

−xP2 xP1 0

 , and
[
W
∼

]
e
=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (22)

Finally, one can express the vector equation (21) in matrix form as

{ω̇}e =
[
I
∼
R
]−1

e
{b}e, (23)

where I
∼
R = I

∼
G −mX

∼
2 and b = mgX

∼
E3 −mX

∼
W
∼

2rP/G −mX
∼
W
∼
r̊P/G − W

∼
I
∼
Gω. Hence, we finally obtain the six

set of six ODEs (18) and (23) in terms of six variables ϕ, θ, ψ, ω1, ω2 and ω3. Note that the degree-of-freedom is
three since all three ωi can be expressed as functions of the angles and their time derivatives and hence, one can, in
principle, obtain three second order ODEs from (23). Nevertheless, to simplify the algebra and to facilitate numerical
solutions of the governing ODEs, we have considered ω1, ω2 and ω3 to be three additional independent variables with
three more govering equations given by (18). Next, we specify physical parameters associated with the Rattleback and
perform computations for its motion.

Results: The physical parameters for the Rattleback are obtained from Kane and Levinson (1982) and the computa-
tions are performed via employing the classical 4th oder Runge-Kutta-based solver ode45 of MATLAB. The mass and
physical dimensions of the Rattleback are taken to be m = 1kg, a1 = 20cm, a2 = 3cm, a3 = 2cm and b = 0.5cm. The
matrix of the inertia tensor I

∼
G in the principle coordinate system ei is expressed as

[
I
∼
G

]
e
=

 2.0 −0.5 0
−0.5 16.0 0
0 0 17.5

 Kg - cm2. (24)

The first set of simulations are performed to demonstrate the preferential rotation of Rattlebacks. For instance, the
first set of numerical computations consider the initial conditions to be ϕ = θ = ψ = 10−6 rad, ω1 = ω2 = 0, while
ω3 = ω0 and ω3 = −ω0 rad s−1. Results shown for the temporal evolutions of ω1, ω2 and ω3 are shown in Fig. 3 for
two initial angular velocities ω0 = 2.5 and 5.0 rad s−1.

Figure 3: Evolution of ω1, ω2 and ω3 in time for (a) ω0 = 2.5 rad s−1 and (b) 5.0 rad s−1. Top figures, where initial spin was given
counter clockwise about E3, show no spin reversal. Spin reversal is observed for clockwise initia spin cases accompanied by high frequency
oscillations about e1 and e2 during the reversal.

The results match quantitatively with that of Kane and Levinson (1982) and qualitative match with all the above-
cited articles are observed. It is observed from Fig. 3 that a higher initial spin in the ”non-preferred” direction will
dealy the spin reversal of the Rattleback, while no spin reversal is observed when the initial spin is given along the
”preferred” direction of the Rattleback. Moreover, the initial spin energy is transferred to the energy of oscillation of
the Rattleback about the e1 and e2 axes of the BFCS during the reversal of its spin. Thus, high frequency oscillations
about e1 and e2 are observed at the time of spin reversal as referred by “rattling up and down” by Walker (1979).
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Nonetheless, once the reversal is complete, the spin energy becomes equal to the initially supplied one, but now having
the Rattleback spinning along its preferred direction.

A second frature observed in the Rattleback is its spin initiated by an initial tapping. If the semi-ellipsoidal solid is
tapped on one side of its face and released, it is observed to be rattling up and down initially, followed by a spin in
its preferred direction. The model also predicts this feature of the Rattleback as shown in the results in Fig. 4. The

Figure 4: Time evolution of ω1, ω2 and ω3 in time for (a) θ0 = 1o and (c) θ0 = 3o. Variation of angle θ in time for (b) θ0 = 1o and (d)
θ0 = 3o. No initial spin is applied.

initial conditions for this set of computations are taken to be ω1 = ω2 = ω3 = 0, ϕ = ψ = 10−6 and θ = θ0. Two set
of computations are shown in Fig. 4, where it is observed that the earlier “rattling” effect in the Rattleback vanishes
soon after the initial tapping and subsequently, it starts spinning its preferred direction; see Fig. 4a and c. Moreover,
it is obderved that the spin rate is greater if the initial tapping angle is more. Temporal evolution of the angle θ(t)
shown in Fig. 4b and d also confirms these observations.

Remarks on the choice of Euler angles: The key features of Rattleback’s motion are its spin reversal and its
“rattling” up and down during the spin reversal. Hence, periodic oscillations around θ = 0 are expected during such a
motion. Thus, the sequence of Euler angles should be chosen so that the matrix [ Φ

∼
] is non-singular for θ = 0. One

can note that the [ Φ
∼

] written in (18) is not singular for θ = 0 for the 1-2-3 sequence of Euler angles. However, one
can verify that the commonly used 3-1-3 Euler angles would lead to a singular [ Φ

∼
] at θ = 0. The choice of 1-2-3

sequence in the present case is heuristic and can be suitably replaced by any other sequence given [ Φ
∼

] is non-singular
at θ = 0. The choice of Euler angles should be made considering the geometry of the problem and possible range of θ
in the solutions to avoid any singularity-related numerical issues in the computations.
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Appendix: Matlab code

1 % -------------------------------------------------------------------------

2 function z = rattleback_simulator_123H ()

3 clear all

4 % Define parameters -------------------------------------------------------

5 % -------------------------------------------------------------------------

6 m=1; % Mass of Rattleback

7 g = 9.81; % Accn due to gravity

8 a1 = 0.2; % Semi -major axis length of the Rattleback

9 a2 = 0.03; % Semi -minor axis 1

10 a3 = 0.02; % Semi -minor axis 2

11 b = 0.005; % Position of CM below the geometric center of the ellipsoid

12 Ixx = 0.0002; % Mass moment of inertia about e1

13 Iyy = 0.0016; % Mass moment of inceria about e2

14 Izz = 0.00175; % Mass moment of inertial about e3

15 Ixy = -0.00005; % Product of inertia

16 %Ixy =0.0; % Product of inertia

17 % -------------------------------------------------------------------------

18 param_vec = [m g a1 a2 a3 b Ixx Iyy Izz Ixy];

19 % -------------------------------------------------------------------------

20 t = linspace (0 ,8 ,250000); % Time span of simulation

21 options = odeset('AbsTol ',1e-12,'RelTol ',1e-12);
22 % Call ODE45 to solve 6 set of simultaneous ODEs

23 % -------------------------------------------------------------------------

24 [T,Y] = ode45 (@(t, y) equns123(t, y, param_vec),t, [0,0,5,1.0e-6 ,1.0e-6 ,1.0e-6],

options);

25 % -------------------------------------------------------------------------

26 y=Y(: ,1:6); % Output variables

27 omega11=Y(:,1);

28 omega12=Y(:,2);

29 omega13=Y(:,3);

30 phi1=Y(:,4) *180/pi;

31 theta1=Y(:,5) *180/pi;

32 psi1=Y(:,6) *180/pi;

33 % -------------------------------------------------------------------------

34 [T,Y] = ode45 (@(t, y) equns123(t, y, param_vec),t, [0,0,-5,1.0e-6 ,1.0e-6 ,1.0e-6],

options);

35 % -------------------------------------------------------------------------

36 phi2=Y(:,4) *180/pi;

37 theta2=Y(:,5) *180/pi;

38 psi2=Y(:,6) *180/pi;

39 omega21=Y(:,1);

40 omega22=Y(:,2);

41 omega23=Y(:,3);

42 % -------------------------------------------------------------------------

43 plottingfn(T,omega11 ,omega12 ,omega13 ,omega21 ,omega22 ,omega23 ,theta1 ,theta2)

44 %animate(phi1 ,theta1 ,psi1 ,phi2 ,theta2 ,psi2)

45 end

46
47 % -------------------------------------------------------------------------

48 % Set of first order ODEs -------------------------------------------------

49 % -------------------------------------------------------------------------

50
51 function dy = equns123(t, y, param_vec)

52
53 m=param_vec (1);

54 g = param_vec (2);

55 a1 = param_vec (3);

56 a2 = param_vec (4);

57 a3 = param_vec (5);
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58 b = param_vec (6);

59 Ix = param_vec (7);

60 Iy = param_vec (8);

61 Iz = param_vec (9);

62 Ixy = param_vec (10);

63
64 Iten = [Ix Ixy 0; Ixy Iy 0; 0 0 Iz]; % Moment of inertia tensor -----------

65
66 w1=y(1);

67 w2=y(2);

68 w3=y(3);

69 phi=y(4);

70 theta=y(5);

71 psi=y(6);

72
73 % Define n1, n2, n3 in terms of the Euler angles --------------------------

74 n1 = sin(phi)*sin(psi)-cos(psi)*sin(theta)*cos(phi);

75 n2 = cos(psi)*sin(phi)+sin(psi)*sin(theta)*cos(phi);

76 n3 = cos(theta)*cos(phi);

77
78 % Define xp1 , xp2 , xp3 in terms of n1, n2, n3 and geometric parameters ----

79 sum_ajnj = a1^2*n1^2+a2^2*n2^2+a3^2*n3^2;

80 xp1 = -a1^2*n1/sqrt(sum_ajnj);

81 xp2 = -a2^2*n2/sqrt(sum_ajnj);

82 xp3 = -a3^2*n3/sqrt(sum_ajnj)+b;

83
84 % Calculate n1_dot , n2_dot , n3_dot ----------------------------------------

85 n1d = -(w2*n3 -w3*n2);

86 n2d = -(w3*n1 -w1*n3);

87 n3d = -(w1*n2 -w2*n1);

88
89 % Calculate xp1_dot , xp2_dot , xp3_dot

90 sum_ajnj_dot = a1^2*n1*n1d+a2^2*n2*n2d+a3^2*n3*n3d;

91 xp1d = -(a1^2* n1d/sqrt(sum_ajnj)-a1^2*n1/( sum_ajnj)^1.5*( sum_ajnj_dot));

92 xp2d = -(a2^2* n2d/sqrt(sum_ajnj)-a2^2*n2/( sum_ajnj)^1.5*( sum_ajnj_dot));

93 xp3d = -(a3^2* n3d/sqrt(sum_ajnj)-a3^2*n3/( sum_ajnj)^1.5*( sum_ajnj_dot));

94
95 % Define skew symmetric matrices

96 Wm = [0 -w3 w2; w3 0 -w1; -w2 w1 0];

97 Xm = [0 -xp3 xp2; xp3 0 -xp1; -xp2 xp1 0];

98 % Defile column vectors

99 Rv = [xp1; xp2; xp3];

100 Rdv = [xp1d; xp2d; xp3d];

101 E3v = [n1; n2; n3];

102 Wv = [w1; w2; w3];

103
104 % Calculate Ir

105 Ir = Iten - m.*Xm*Xm;

106 % Calculate the RHS vector in the angular momentum balance ----------------

107 rhsvc = -Wm*Iten*Wv-m.*Xm*(Wm*(Wm*Rv))-m.*Xm*(Wm*Rdv)+m*g.*(Xm*E3v);

108
109 % Calculation of omega_dot vector -----------------------------------------

110 omegad = inv(Ir)*rhsvc;

111
112 %

113 % Input the computed omega dot to the function output dy

114 dy(1) = omegad (1);

115 dy(2) = omegad (2);

116 dy(3) = omegad (3);

117
118 %

7



119 % Calculation of {phi_dot , theta_dot , psi_dot} vector ---------------------

120 Phim = [cos(theta)*cos(psi) sin(psi) 0;

121 -cos(theta)*sin(psi) cos(psi) 0;

122 sin(theta) 0 1];

123
124 angd = inv(Phim)*Wv;

125
126 dy(4) = angd (1);

127 dy(5) = angd (2);

128 dy(6) = angd (3);

129
130 dy = dy(:);

131 end

132
133 %

134 % -------------------------------------------------------------------------

135 % Plot --------------------------------------------------------------------

136 % -------------------------------------------------------------------------

137
138 function z=plottingfn(T,omega11 ,omega12 ,omega13 ,omega21 ,omega22 ,omega23 ,theta1 ,

theta2)

139 subplot (2,1,1)

140 plot(T,omega11 ,'b-')
141 hold on

142 plot(T,omega12 ,'r-')
143 plot(T,omega13 ,'g-')
144 hold off

145 legend ({'$\ omega_1$','$\ omega_2$','$\ omega_3$'},Interpreter='latex ');
146 xlabel('$t$ (s)',Interpreter='Latex ');
147 ylabel('$\ omega$ (rad/s)',Interpreter='Latex ');
148
149 subplot (2,1,2)

150 plot(T,omega21 ,'b-')
151 hold on

152 plot(T,omega22 ,'r-')
153 plot(T,omega23 ,'g-')
154 hold off

155 legend ({'$\ omega_1$','$\ omega_2$','$\ omega_3$'},Interpreter='latex ');
156 xlabel('$t$ (s)',Interpreter='Latex ');
157 ylabel('$\ omega$ (rad/s)',Interpreter='Latex ');
158
159
160 figure

161 subplot (2,1,1)

162 plot(T,theta1 ,'b-')
163 ylim([-5 5])

164 xlabel('$t$ (s)',Interpreter='Latex ');
165 ylabel('$\ theta ^{\ circ}$',Interpreter='Latex ');
166
167 subplot (2,1,2)

168 plot(T,theta2 ,'b-')
169 xlabel('$t$ (s)',Interpreter='Latex ');
170 ylabel('$\ theta ^{\ circ}$',Interpreter='Latex ');
171
172
173 end
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