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This note derives the governing equations for the rolling of the Rattleback on a flat surface. The 1-2-8 system of Euler
angles is used to express the rotated body-fized coordinate system with respect to the inertial coordinate system. The
governing ordinary differential equations are derived from the Fuler’s laws of linear and angular momentum balance.
Finally, the governing equations are solved numerically in MATLAB to demonstrate the model’s prediction of spin
reversal of the Rattleback.

Introduction: A Rattleback, also referred as a celt, wobblestone or a rattlestone is a semi-ellipsoidal solid object that
exhibits a “preferred direction” of spin on its semi-ellipsoidal surface S; see Fig. 1a. Thus, while the Rattleback keeps
on spinning if the initial spin is given in its preferred direction, a spin reversal is observed when one attempts to spin
it in its non-preferred direction. Due to the complex nature of the governing differential equations of the Rattleback,
an exact, closed form solution could not be attained in the earlier efforts to model the “Rattleback effect” (Walker)
1979; |Caugheyl, [1980). Subsequently, with the availability of computers and development of efficient Runge-Kutta-type
solution algorithms, researchers have reported numerical solutions to the governing equations (Kane and Levinson,
1982; [Lindberg Jr and Longman, 1983} |Garcia and Hubbardl 1988} [Moffatt and Tokiedal 2008} |(Case and Jalal, [2014;
Kondo and Nakanishil [2017; |[Rauch-Wojciechowski and Przybylska, |2017)). This note considers a practical approach
towards numerically computing the response of a Rattleback under different initial conditions.

Figure 1: (a) Schematic diagram of the Rattleback having semi-ellipsoidal surface S with geometrical center at O’ and center of mass at
G. The coordinate system {&;,&,,&5} is attached to the ellipsoid at its geometric center O’, whereas the body-fixed coordinate system
{e;,e,, €3} is attached to the center of mass of the ellipsoid G. The inertial coordinate system having center at O is denoted by {E;, E,, E5}.
(b) Free-body-diagram of the Rattleback showing external force f , from the ground acting at point P and its weight acting along —E5 at
its center of mass G.

Coordinate systems and geometry: Consider the space-fixed (inertial) coordinate system (SFCS) having origin at
point O on the flat surface is represented by the set {E;, E,, E;}. The body-fixed coordinate system (BFCS) attached
at the geometric center O of the semi ellipsoid represented by {€;, €,, €5}, while the BFCS attached to the center of
mass G of the semi ellipsoid is denoted by {e;,e,,€e5}. Notice that the coordinate systems {€;} and {e;} are related
by a translation along e; (or, equivalently along —&5). The distance between G and O’ is b, which is the depth from
the cut surface of semi-ellipsoidal solid at which the center of mass is situated. The equation of surface S in {€;}
coordinate system is
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where a; (i = 1,2, 3) are the principal semiaxis lengths of the ellipsoid having center at O’. Since the BFCSs {¢,} and
{e,} are related via a translation of length b along e;, (1) can be rephrased as
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Since the normal to the ellipsoid at the point of contact P is always parallel to E5, the position vectors x; of P satisfy
the constraint (Kane and Levinson) 1982} |Garcia and Hubbard, [1988)

[grad(S)]XP x E; =0, (3)
where grad([J) represents gradient with respect to x. Considering a representation for E; = ng3)gl + né?’)gz + né3)§3
in the {e,;} basis, the kinematic constraint is expressed as
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The coefficients ngg) are essentially three unknowns. However, instead of considering ngg) as primary variables, they

can be conveniently expressed in terms of three Fuler angles {¢,60,1}. Note that xp1,xps and xp3 also satisfy
since P is always on the surface S. Thus, equations along with leads to the expression for x; to be
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where J,, is the Kronecker delta symbol. Hence, the coordinates of point P in the bases {e;} is determined in terms of
the Euler angles and the semiaxis lengths a; of the ellipsoid. Hence, the position of the contact point P with respect
to the center of mass G is given by rp, = rp;e; (P is not a dummy index). The exact sign (+/—) of zp; to be
considered in depends on the choice of Euler angles, which is discussed in the following.
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Kinematics: The center of mass G of the Rattleback can be located at a distance rs from the inertial reference point
O. Nonetheless, for describing its orientation in three dimensions it needs to define three more independent variables
relating the BFCS {e;} to the SFCS {E,}. Here for example, we employ a 3-1-3 system of Euler angles is employed to
relate the BFCS {e;} to SFCS {E,}. Thus, different intermediate coordinate systems shown in Fig. 2 are related via
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Where R4, Ry and Rg3 are three rotation tensors mapping the left hand unit vectors to those in the right hand of the
arrows in ~
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Figure 2: Sequence of rotations in a 1-2-3 system of Euler angles.

The matrix of three rotation tensors indicated in @ expressed in their respective basis systems read

1 0 0 cosf 0 sind costyp —siny 0
R ] g= |0 cosp —sing|, [Ro] o = 0 1 0|, [Rs o = |siny  cosyp 0. (7)
T 0 sing cos¢ T —sinf 0 cosf T 0 0 1

The angular velocity of the Rattleback is thus given by w = q%El + 99’2 + z/}gg’ = gf)g’l + 9@’2’ + 1/}93. Unit vectors e} and
e/ can be expressed from () and (7)) to be

{el}, = [Ralg [Ral {ef},- {e/}, = Rl {e ) (8)

Hence, the angular velocity vector w expressed in the BFCS {e,} reads w = w;e;, where the components w; are given
by

w1 = ¢cosfcosyy + Osiny, wy = —@coshsiny + 6 cos, w3 = ¢sinf + . (9)
We assume further the Rattleback to be rolling without slipping on the flat surface. Hence, the point of contact P as

shown in Fig. la will always satisfy vp = 0. Thus, the velocity of the center of mass G of the Rattleback is (Kane
and Levinsonl 1982} [Lindberg Jr and Longmanl 1983} |Garcia and Hubbard, [1988)

Vg =—wX Ip/g- (10)

where I'p/g = TPi€; is the position vector of P with respect to G. Note that, the position vector I'p/g changes both
its length and orientation in time. Hence, the rate of change of its length needs to be taken care of in the kinematic
formulation. Thus, rp /G = Tpi€;. Differentiating we obtain the acceleration of the center of mass a; to be

a; =Vg=-—WXTIpc—wWX(WXTp/g)—wXIp/g. (11)
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The symbol O in the above equation represents the component derivative of a vector considering its unit vectors to be
constant. The calculation of rp /¢ 1s carried out by differentiating . The components of rp /¢ are listed next. First,
the time derivatives of x p; reads
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Clearly, the esssential components of & p; are the time derivatives of the components of the unit normal vector E;,
: 3 (3) (3)
which has components n;™’, ny~’ and ns .
ngg) = sin ¢ siny — cos ¢ cos Y sin b, né?’)
(12) can be obtained from the relation

These components can be expressed in terms of the Euler angles as

= cossin ¢ + cos ¢sinysinf, and né3) = cos ¢ cos . Furthermore, hgg) in
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since E; is an unit vector that is fixed in space. Hence, n,”’ are expressed as:
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Thus, substituting (9)), and into (11), one can fully express ag in terms of the Euler angles and their first
and second-order time derivatives. Finally, note that only negative signs of the terms in are retained because of
the term a?n; present its denominator and n; is posiive for all 0 < {¢,0,¢} < 5 for all i = 1,2 and 3. Thus, the point
of contact P for 0 < {¢,0,v} < T always lies in the third quadrant of the BFCS {e;}. Next, the linear and angular
momentum balance laws for the Rattleback are laid down.

Kinetics: The free-body-diagram of the Rattleback is depicted in Fig. 1b. Notice that except the gravitational
force acting at G, the Rattleback expeciences ground reaction and frictional forces at the point of contant P. The
resultant of the reaction and friction forces at P is represented by fp. Hence, the linear momentum balance law for
the Rattleback reads

fp —mgE; = mag, (15)

where m is the mass of the Rattleback and ¢ is acceletion due to gravity. Next, the angular momentum balance for
the Rattleback, written with respect to its center of mass G is expressed as

Ip/g X fr = IGQ‘FQ X IGQa (16)
where I¢ is the inertia tensor associated with the Rattleback. Substituting f, from into leads to
rpio X (mgE; +mag) = 190 + w x 1% (17)

Substituting and @ into one can obtain three fully coupled, second order, nonlinear ordinary differential
equations (ODEs) in terms of the Euler angle triad {¢, 0,1} and their time derivatives governing the motion of the
Rattleback. Such an exercise is cumbersome and the final algebraic expressions becomes highly complicated.

An alternative way to express the governing equations as six first order ODEs in terms of (i), 9, 1&, w1, Wo, w3 and
solving them in a computer employing the explicit Runge-Kutta-type algorithms. The first set of governing ODEs in
terms of ¢, 6, ¢ are obtained from @D to be

(]:5 cosfcosty siny 0 -t w1 ¢ L[
6 p = |—cosfsiny cosyp 0 wa = 0p=[®] quwap. (18)
P sin 6 0 1 w3 ¥ - w3

Next, the angular momentum balance law leads to three set of ODEs in terms of wy, wa, ws. First substitute ag

from into to obtain

I'p/c X [ng3 — MW X Tp/g — MW X (w x £P/G> — mw X fP/G] =I%% +w x I%. (19)

Rearranging terms in yields:
mg(rp;q X E3) —mrp,q x [w x (w x £P/G)] —mrpg X (WX Ep/g) —w X {Gﬂ = EGQ —mrp,g X (Lp/g X w). (20)
The last equation can be rephrased in tensor notations as
mgXE; — mXW?rp o — mXWip o — WI%% = [19 - mX?|w, (21)

~ ~
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where X and W are skew-symmetric tensors, whose axial vectors are rp,; and w, respectively. Hence, the matrices
of X and W in the BFCS e; read

0 —Tp3  Tp2 0 —ws wo
[ )N( ]e = T p3 0 —xp1|, and [ W ]e = w3 0 —wi - (22)
B —Tp2 T p1 0 B —W?2 w1 0

Finally, one can express the vector equation in matrix form as
. -1
{@le=[17], (bl (23)

where I = 1€ — mX? and b = mgXE; — mXWQgP/G - mXWip g — WI1%w. Hence, we finally obtain the six
set of six ODEs Nand in terms of six variables ¢, 6, 1, w;, wy and ws. Note that the degree-of-freedom is
three since all three w; can be expressed as functions of the angles and their time derivatives and hence, one can, in
principle, obtain three second order ODEs from . Nevertheless, to simplify the algebra and to facilitate numerical
solutions of the governing ODEs, we have considered wy, wo and ws to be three additional independent variables with
three more govering equations given by . Next, we specify physical parameters associated with the Rattleback and
perform computations for its motion.

Results: The physical parameters for the Rattleback are obtained from [Kane and Levinson| (1982) and the computa-
tions are performed via employing the classical 4" oder Runge-Kutta-based solver ode45 of MATLAB. The mass and
physical dimensions of the Rattleback are taken to be m = lkg, a; = 20cm, as = 3cm, ag = 2cm and b = 0.5cm. The
matrix of the inertia tensor I¢ in the principle coordinate system e, is expressed as

20 —05 0
[19] =]-05 160 0 | Kg-cm” (24)
o 0 0 175

The first set of simulations are performed to demonstrate the preferential rotation of Rattlebacks. For instance, the
first set of numerical computations consider the initial conditions to be ¢ = 6 = 1 = 107° rad, w; = wy = 0, while
wg = wp and ws = —wy rad s~!. Results shown for the temporal evolutions of w;, ws and ws are shown in Fig. 3 for
two initial angular velocities wy = 2.5 and 5.0 rad s~ *.
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Figure 3: Evolution of w1, we and w3 in time for (a) wp = 2.5 rad s~! and (b) 5.0 rad s~1. Top figures, where initial spin was given
counter clockwise about E5, show no spin reversal. Spin reversal is observed for clockwise initia spin cases accompanied by high frequency
oscillations about e; and e, during the reversal.

The results match quantitatively with that of Kane and Levinson| (1982) and qualitative match with all the above-
cited articles are observed. It is observed from Fig. 3 that a higher initial spin in the "non-preferred” direction will
dealy the spin reversal of the Rattleback, while no spin reversal is observed when the initial spin is given along the
"preferred” direction of the Rattleback. Moreover, the initial spin energy is transferred to the energy of oscillation of
the Rattleback about the e; and e, axes of the BFCS during the reversal of its spin. Thus, high frequency oscillations
about e; and e, are observed at the time of spin reversal as referred by “rattling up and down” by (1979).
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Nonetheless, once the reversal is complete, the spin energy becomes equal to the initially supplied one, but now having
the Rattleback spinning along its preferred direction.

A second frature observed in the Rattleback is its spin initiated by an initial tapping. If the semi-ellipsoidal solid is
tapped on one side of its face and released, it is observed to be rattling up and down initially, followed by a spin in
its preferred direction. The model also predicts this feature of the Rattleback as shown in the results in Fig. 4. The
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Figure 4: Time evolution of w1, w2 and w3 in time for (a) fg = 1° and (c) fp = 3°. Variation of angle 6 in time for (b) g = 1° and (d)
6o = 3°. No initial spin is applied.

initial conditions for this set of computations are taken to be wq; = ws = w3 =0, ¢ = ¢ = 107 and 0 = 6. Two set
of computations are shown in Fig. 4, where it is observed that the earlier “rattling” effect in the Rattleback vanishes
soon after the initial tapping and subsequently, it starts spinning its preferred direction; see Fig. 4a and c. Moreover,
it is obderved that the spin rate is greater if the initial tapping angle is more. Temporal evolution of the angle 6(t)
shown in Fig. 4b and d also confirms these observations.

Remarks on the choice of Euler angles: The key features of Rattleback’s motion are its spin reversal and its
“rattling” up and down during the spin reversal. Hence, periodic oscillations around 6 = 0 are expected during such a
motion. Thus, the sequence of Euler angles should be chosen so that the matrix [ @ | is non-singular for # = 0. One
can note that the [ ® | written in is not singular for § = 0 for the 1-2-3 sequence of Euler angles. However, one
can verify that the commonly used 3-1-3 Euler angles would lead to a singular [ @ ] at § = 0. The choice of 1-2-3
sequence in the present case is heuristic and can be suitably replaced by any other sequence given [ ® ] is non-singular
at # = 0. The choice of Euler angles should be made considering the geometry of the problem and possible range of @
in the solutions to avoid any singularity-related numerical issues in the computations.
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Appendix: Matlab code

Y
m=1; 7 Mass of Rattleback

g = 9.81; / Accn due to gravity

al = 0.2; 7 Semi-major aztis length of the Rattleback

a2 = 0.03; 7/ Semi-minor axzis 1

a3 = 0.02; 7/ Semi-minor azis 2

b = 0.005; /% Position of CM below the geometric center of the ellipsoid
Ixx = 0.0002; / Mass moment of inertia about el

Iyy = 0.0016; / Mass moment of inceria about e2

Izz = 0.00175; 7 Mass moment of inertial about e3

Ixy =-0.00005; 7 Product of imnertia

AIzy =0.0; J Product of <inertia

t = linspace(0,8,250000); /7 Time span of simulation
options = odeset('AbsTol',le-12, 'RelTol',1e-12);
% Call ODE45 to solve 6 set of stimultaneous UODEs

R R ————————

[T,Y] = ode45(@(t, y) equnsi123(t, y, param_vec),t, [0,0,5,1.0e-6,1.0e-6,1.0e-6],
options);

Z _________________________________________________________________________

y=Y(:,1:6); % Output wvariables
omegall=Y(:,1);
omegal2=Y(:,2);
omegal3=Y(:,3);
phil=Y(:,4)*180/pi;
thetal=Y(:,5)*180/pi;
psil=Y(:,6)*180/pi;

Z _________________________________________________________________________

[T,Y] = ode45(@(t, y) equns123(t, y, param_vec),t, [0,0,-5,1.0e-6,1.0e-6,1.0e-6],
options);

Z _________________________________________________________________________

phi2=Y(:,4) *180/pi;
theta2=Y(:,5)*180/pi;
psi2=Y(:,6)*180/pi;
omega21=Y(:,1);
omega22=Y(:,2);
omega23=Y(:,3);

plottingfn(T,omegall ,omegal2 ,omegal3,omega2l ,omega22 ,omega23,thetal,theta?2)
sanimate (phil, thetal ,psil,phi2, theta2,psi2)
end

function dy = equns123(t, y, param_vec)

m=param_vec (1) ;

g = param_vec (2);
al = param_vec(3);
a2 param_vec (4);
a3 param_vec (5) ;



b = param_vec (6);

Ix = param_vec (7);
Iy param_vec (8) ;
Iz param_vec (9);
Ixy = param_vec (10);

Iten = [Ix Ixy O; Ixy Iy 0; 0 O Iz]l; 7 Moment of imertia tensor -—-—--——------

wi=y(1);
w2=y(2);
w3=y(3);
phi=y (4);
theta=y (5);
psi=y(6);

4 Define nl1, n2, n3 in terms of the Euler angles —--——-—-—-——————-———-———————————-
nl = sin(phi)*sin(psi)-cos(psi)*sin(theta)*cos(phi);

n2 = cos(psi)*sin(phi)+sin(psi)*sin(theta)*cos (phi);

n3 cos (theta)*cos (phi);

4 Define zpl, zp2, zp3 tn terms of nl, n2, n3 and geometric parameters ----
sum_ajnj = al”2xnl1"2+a272*xn2"2+a372*xn3"2;

xpl = -al”2*nl/sqrt(sum_ajnj);
xp2 = -a27"2*n2/sqrt(sum_ajnj);
xp3 = -a3"2xn3/sqrt(sum_ajnj)+b;

/4 Calculate nl_dot, n2_dot, n3_dot —-—-———————=="—="—="————"———————(—~——(—~———~—~——(—(—(————

nld = -(w2*n3-w3*n2) ;
n2d = -(w3*nl-wl*n3);
n3d = -(wl*n2-w2%*nl);

4 Calculate zpl_dot, zp2_dot, zp3_dot
sum_ajnj_dot = al”2x*nl*nld+a2”2*n2*n2d+a3"2*n3*n3d;

xpld = -(al"2*nld/sqrt(sum_ajnj)-al~2*nl/(sum_ajnj) "1.5*x(sum_ajnj_dot));
xp2d = -(a272*n2d/sqrt(sum_ajnj)-a2~2*n2/(sum_ajnj) "1.5x(sum_ajnj_dot));
xp3d = -(a3"2*n3d/sqrt(sum_ajnj)-a3"2*n3/(sum_ajnj) ~1.5*x(sum_ajnj_dot));

% Define skew symmetric matrices

Wm = [0 -w3 w2; w3 0 -wl; -w2 wl 0];

Xm = [0 -xp3 xp2; xp3 0 -xpl; -xp2 xpl 0];
/4 Defile column wvectors

Rv = [xpl; xp2; xp3];

Rdv = [xpld; =xp2d; xp3d];

E3v = [nl1; n2; n3];

Wv = [wl; w2; w3]l;

/4 Calculate Ir

Ir = Iten - m.*Xm*Xm;
% Calculate the RHS wector in the angular momentum balance —----———---———---——~-
rhsve = -Wm*Iten*Wv-m.*Xm*(Wn*(Wm*Rv))-m.*Xm*(Wn*Rdv) +m*g.*(Xm*E3v) ;

4 Calculation of omega_dot wvector ———————————————————————-——————————————————
omegad = inv(Ir)*rhsvc;

A

% Input the computed omega dot to the function output dy
dy (1) = omegad (1);

dy (2) omegad (2) ;

dy (3) omegad (3) ;

V4



4 Calculation of {phi_dot, theta_dot, psi_dot} wector --—-——-——————————————-
Phim = [cos(theta)*cos(psi) sin(psi) O;

-cos(theta)*sin(psi) cos(psi) O0;

sin(theta) 0 11;

angd = inv (Phim) *Wv;

dy (4) = angd(1);

dy (5) = angd(2);

dy (6) = angd(3);

dy = dy(:);

end
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Z _________________________________________________________________________
A PlOt ——mmmm e e e -

function z=plottingfn(T,omegall ,omegal2,6omegall,omega2l ,6omega22,omega23,thetal,
theta?2)

subplot(2,1,1)

plot(T,omegall, 'b-")

hold on

plot(T,omegal2,'r-"')

plot (T,omegal3, 'g-"')

hold off

legend ({'$\omega_18', " '$\omega_23%"', '$\omega_3$'},Interpreter="'1latex');

xlabel ('$t$ (s)',Interpreter='Latex');

ylabel ('$\omega$ (rad/s)',Interpreter='Latex');

subplot(2,1,2)

plot(T,omega2l,'b-")

hold on

plot(T,omega22,'r-"')

plot(T,omega23,'g-")

hold off

legend ({'$\omega_1$"', '$\omega_2¢"', '$\omega_3$'},Interpreter="'1atex');
xlabel ('$t$ (s)',Interpreter='Latex');

ylabel ('$\omega$ (rad/s)',Interpreter='Latex');

figure

subplot(2,1,1)

plot (T,thetal, 'b-")

ylim ([-5 5])

xlabel ('$t$ (s)',Interpreter='Latex');

ylabel ('$\theta"{\circ}$',Interpreter="'Latex');

subplot(2,1,2)

plot (T,theta2, 'b-")

xlabel ('$t$ (s)',Interpreter='Latex');

ylabel ('$\theta"{\circ}$',Interpreter="'Latex');

end



